AlamLinux 9.4 install 설치하기
Updated on
목차
almaLinux 로 포멧을 다시 진행하였고, 해당 과정을 간단하게 기록해본다.
기본 포멧 및 설치하기#
기본 패키지 업그레이드#
dnf upgrade네트워크 인터페이스 잡기 (ONBOOT 수정)#
cd /etc/sysconfig/network-scripts/
vi ifcfg-enp70s0
DEVICE=enp70s0
BOOTPROTO=dhcp
ONBOOT=yesfirewalld 비활성화#
systemctl stop firewalld
systemctl disable firewalldsemanage 22960 port 추가#
dnf install policycoreutils-python-utils
semanage port -a -t ssh_port_t -p tcp 22960sshd port 변경#
cd /etc/ssh
vim sshd_config
Port 22960
PermitRootLogin yes
systemctl restart sshd디스크 마운트#
lsblk -f
NAME FSTYPE FSVER LABEL UUID FSAVAIL FSUSE% MOUNTPOINTS
sda ext4 1.0 b1f8274b-8367-46a3-af7a-9cc6415cebf8
nvme0n1
├─nvme0n1p1 vfat FAT32 E636-00F9 591.8M 1% /boot/efi
├─nvme0n1p2 xfs 6784e138-f5c2-43b1-ad84-a977dfa9d206 683.4M 29% /boot
└─nvme0n1p3 LVM2_member LVM2 001 kj7k6S-ph7v-BwDG-q3ad-tTph-OvTE-CR3pbI
├─almalinux_ollama--api-root xfs f260f019-aff5-419c-a402-7815b60da6a6 68G 3% /
├─almalinux_ollama--api-swap swap 1 ba20f638-52df-466a-b02a-f1ead179b24d [SWAP]
└─almalinux_ollama--api-home xfs 732350a1-a9fc-4f37-83e7-c8147ad755e1 849.5G 1% /home
nvme1n1 xfs 62a1faab-d641-4bc3-bacf-627f1f291c71
fdisk -l /dev/sda
fdisk -l /dev/nvme1n1
폴더 생성하기#
mkdir /db
mkdir /data폴더에 디스크 마운트 하기#
mount /dev/nvme1n1 /db
mount /dev/sda /data
lsblk -f
NAME FSTYPE FSVER LABEL UUID FSAVAIL FSUSE% MOUNTPOINTS
sda ext4 1.0 b1f8274b-8367-46a3-af7a-9cc6415cebf8 8T 6% /data
nvme0n1
├─nvme0n1p1 vfat FAT32 E636-00F9 591.8M 1% /boot/efi
├─nvme0n1p2 xfs 6784e138-f5c2-43b1-ad84-a977dfa9d206 683.4M 29% /boot
└─nvme0n1p3 LVM2_member LVM2 001 kj7k6S-ph7v-BwDG-q3ad-tTph-OvTE-CR3pbI
├─almalinux_ollama--api-root xfs f260f019-aff5-419c-a402-7815b60da6a6 68G 3% /
├─almalinux_ollama--api-swap swap 1 ba20f638-52df-466a-b02a-f1ead179b24d [SWAP]
└─almalinux_ollama--api-home xfs 732350a1-a9fc-4f37-83e7-c8147ad755e1 849.5G 1% /home
nvme1n1 xfs 62a1faab-d641-4bc3-bacf-627f1f291c71 868.6G 7% /db
/etc/fstab 수정 (자동 마운트)#
# auto-mount > 추가 설정
UUID=62a1faab-d641-4bc3-bacf-627f1f291c71 /db xfs defaults 0 0
UUID=b1f8274b-8367-46a3-af7a-9cc6415cebf8 /data ext4 defaults 0 0재부팅 후 auto mount 잘 적용됬는지 아래 명령어로 확인#
reboot
lsblk -f저장소 추가#
dnf install dnf-plugins-core
dnf install epel-release
dnf config-manager --set-enabled crb기본 패키지 설치#
dnf install vim htop net-tools iputils dnsutils curl wget rsync lsof ncdu which tcpdump unzip lsscsi bash-completion lm_sensors
sensors-detect기본 패키지 업그레이드#
dnf upgrade현재 리눅스 및 커널 버전 확인#
hostnamectl
Static hostname: (unset)
Transient hostname: server.local
Icon name: computer-desktop
Chassis: desktop 🖥️
Machine ID: 474b2ef929ea40a9b94cad40ae267e9f
Boot ID: 9109fff82bde405b80c6977b8be00840
Operating System: AlmaLinux 9.4 (Seafoam Ocelot)
CPE OS Name: cpe:/o:almalinux:almalinux:9::baseos
Kernel: Linux 5.14.0-427.18.1.el9_4.x86_64
Architecture: x86-64
Hardware Vendor: ASUS
Hardware Model: ROG ZENITH II EXTREME ALPHA
Firmware Version: 2102cron.d 에 추가#
0 0 * * * /bin/sync && echo 1 > /proc/sys/vm/drop_cachesnvidia driver 설치하기#
설치하기#
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#nvidia-open-gpu-kernel-modules 주소에 설치 방법이 나와있다.
dnf install tar bzip2 wget make automake gcc gcc-c++ pciutils elfutils-libelf-devel libglvnd-devel bind-utils kernel-headers kernel-devel freeglut-devel libX11-devel libXi-devel libXmu-devel mesa-libGLU-devel freeimage-devel libglfw3-devel
lspci | grep VGA
dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel9/x86_64/cuda-rhel9.repo
dnf module install nvidia-driver:open-dkms
reboot
nvidia-smi
nvidia-smi nvlink --status여기서 nvidia Persistence 모드 활성화를 해준다.
systemctl enable nvidia-persistenced
systemctl start nvidia-persistenceddocker 설치하기#
설치하기#
dnf erase podman buildah
dnf update
dnf config-manager --add-repo https://download.docker.com/linux/rhel/docker-ce.repo
dnf -y install docker-ce docker-ce-cli containerd.io docker-compose-plugin
systemctl --now enable docker
docker compose version
docker --version
docker network create frontend
docker network create backendnvidia-toolkit docker 설치하기#
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo | \
sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
dnf config-manager --set-enabled nvidia-container-toolkit-experimental
dnf install -y nvidia-container-toolkit
nvidia-ctk runtime configure --runtime=docker
systemctl restart docker성능 최적화#
TCP 튜닝#
/etc/sysctl.conf
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
net.core.netdev_max_backlog = 5000
net.ipv4.tcp_window_scaling = 1
net.ipv4.tcp_moderate_rcvbuf = 1
net.ipv4.tcp_congestion_control = cubic
sysctl -p파일 디스크립터 한도 증가#
/etc/security/limits.conf
* soft nofile 65536
* hard nofile 65536이렇게 설치하면, 서버 컴퓨터의 리눅스 설치를 정상적으로 하게 된 것이다.